Selection of Support Vector Kernel Parameters for Improved Generalization

نویسندگان

  • Loo-Nin Teow
  • Kia-Fock Loe
چکیده

The selection of kernel parameters is an open problem in the training of nonlinear support vector machines. The usual selection criterion is the quotient of the radius of the smallest sphere enclosing the training features and the margin width. Empirical studies on real-world data using Gaussian and polynomial kernels show that the test error due to this criterion is often much larger than the minimum test error. In other words, this criterion can be suboptimal or inadequate. Hence, we propose augmenting the usual criterion with a traditional measure of class separability in statistical feature selection. This measure employs the within-class and betweenclass scatter in feature space, which is equivalent to computing the pooled covariance matrix trace and the distance between class means. We show empirically that the new criterion results in improved generalization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Bilevel Model Selection for Support Vector Machines

The successful application of Support Vector Machines (SVMs), kernel methods and other statistical machine learning methods requires selection of model parameters based on estimates of the generalization error. This paper presents a novel approach to systematic model selection through bilevel optimization. We show how modelling tasks for widely used machine learning methods can be formulated as...

متن کامل

MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...

متن کامل

Margin-based Feature Selection Techniques for Support Vector Machine Classification

Feature selection for classification working in high-dimensional feature spaces can improve generalization accuracy, reduce classifier complexity, and is also useful for identifying the important feature “markers”, e.g., biomarkers in a bioinformatics or biomedical context. For support vector machine (SVM) classification, a widely used feature selection technique is recursive feature eliminatio...

متن کامل

Optimal Parameter Selection in Support Vector Machines

The purpose of the paper is to apply a nonlinear programming algorithm for computing kernel and related parameters of a support vector machine (SVM) by a two-level approach. Available training data are split into two groups, one set for formulating a quadratic SVM with L2-soft margin and another one for minimizing the generalization error, where the optimal SVM variables are inserted. Subsequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000